Determination of steroids by densitometry of derivatives

III. Micro-assay of estrogens as DANSYL derivatives*

The fiuorodensitometry of the I-dimethylaminonaphthyl-5-sulfonyl (DANSYL) derivatives of estrogens has been described in preceding communications ${ }^{1,2}$. By direct evaluation of thin-layer chromatograms, as little as 5 ng of estrogen could be determined with adequate accuracy and precision. In order to increase the sensitivity of this method, the separation of the DANSYL derivatives of estrogens by thin-layer chromatography (TLC) and the experimental conditions used for the ensuing fluorodensitometry were modified as described in this paper.

Methods

Preparation and thin-layer chromatography of the DANSYL derivatives of estrogens. DANSYL derivatives of estrone [3-hydroxy-1,3,5(ro)-estratrien-17-one], estradiol [$1,3,5$ (Io)-estratriene-3, 17β-diol] and estriol [$\mathrm{I}, 3,5$ (ro)-estratriene-3, $16 \alpha, 17 \beta$ triol] were prepared as described in earlier publications ${ }^{1-3}$. The separation of the free estrogens and DANSYL derivatives could be achieved by thin-layer chromatography on silica gel, using pre-coated plates of different brands and various solvent systems (Table I), as well as on polyamide in acetone-methanol-water ($2: 8: 2$). The following pre-coated plates were tested: silica gel (Woelm, Eschwege, G.F.R.), Silica Gel G (No. I500; Schleicher \& Schüll, Dassel, G.F.R.), Silica Gel F ${ }_{254}$ (Merck AG, Darmstadt, G.F.R.) silica gel alufoil (Woelm), polyamide (No. I60o G; Schleicher \& Schüll) and polyamide alufoil (Merck AG). Pre-treatment of the silica gel layers by ascending chromatography with chloroform-ethanol ($3: I$) or of polyamide layers with methylene chloride-carbon tetrachloride-methanol ($\mathrm{I}: \mathrm{I}: I$) and subsequent activation for $\mathrm{I} h$ at $I I^{\circ}$ were found to eliminate interfering substances in the sorbent material and to improve the reproducibility of the $R . F$ values. After the application of samples on I-cm wide lanes and development in the mobile phase, the chromatograms were dried in air, followed by drying for 24 h over blue gel, spraying with isopropanoltriethylamine ($4: r)^{4}$, drying in air and then for 24 h over blue gel.

Fluorodensitometry of DANSYL derivatives. When estrogen DANSYL derivatives on thin-layer chromatograms were submitted to fluorodensitometry in an SD 3000 spectrodensitometer (Schoeffel Instruments Corp., Westwood, N.J., U.S.A.), a wavelength of 362 nm was selected for excitation of fluorescence, which was then measured at 517 nm . The peaks recorded were evaluated by triangulation and determination of the peak areas.

When using the TLD Ioo instrument (Vitatron, Dieren, The Netherlands) for fluorodensitometry, a primary filter with maximum transparency at 364 nm and a U-2 secondary filter were chosen, the peaks being evaluated by the above procedure or by digital intergration.

[^0]'TABLEI
R_{F} VAbLES OF ESTROGENS AND DANSYL DERIVATIVES ON SHICA GEL LAYERS
Systems: (1) chloroform-benzene (8:2) ; (13) chloroform-diowan (94:6); (C) chloroform-dioxan
 benzene-ethanol (IS:2:1); (G) chloroform-elioxan-carbon tetrachoride (3:2:5). All proportions arev/r.

Sustem	Rrvalue					
	Istrone		Estradiol		Estriol	
	liree	D.ANSYL	Pree	D.1NSYT.	Prie	I. H +NSY\%
\therefore	0.15		0.07		0.00	
13	0.55	0.70	0.29	0.48	0.02	0.0.4
C.	0.60	0.73	0.48	0.58	0.16	0.1.1
$1)$	O. I +1		0.07		0.00	
1:	0.14	0.16	0.17	0.076	0.02	0.00
1	$0 . .18$	0.65	0.3.4	0.50	0.0 .5	0.11
(i	0.55		0.46		0.13	

TABLE II
 INSTRUMENT

. 1 motrut of estriol (1 ng)	Prak arcu (cmin^{2})			
	A^{1}	3^{1}	$C^{\text {c }}$	D ${ }^{\text {d }}$

Silica gel (Hoclm)

1.0				
2.5				0.45
5.0	0.62	0.50	0.95	1.10
7.5	1.34	1.00	2.10	2.52
10.0	1.60	1.25	2.90	3.10
2.0	3.78	2.72	7.75	7.85

Silica (iel (\vec{r} (No. 1500; Schleicher \& . Schïll)

1.0				0.72
2.5		0.27	0.85	1.20
5.0	0.60	0.47	$1.4+$	2.15
7.5	0.72	0.69	1.98	2.52
10.0	1.92	1.95	5.95	6.55
2.0				

Silica Gel $\mathrm{F}_{2 \mathrm{ni}}$ (Merch)
1.0
2.5 Not detectable
5.0
7.51 .15
10.0 1.40
25.0 4.4.5

Silica gel, aldfoil (Woclm) 1.0

| 2.5 | Not detectable |
| :--- | :--- | :--- |
| 5.0 | Not measured |

Not measured
7.5 I..44
$10.0 \quad 1.89$
$25.0 \quad 0.60 \quad 0.64 \quad 4.90$
$n A=$ after drying the chromatogram in air.
" $13=$ after clrying for 24 h over bluc gel.
c $C=$ after spraying with isopropanol-tricthylamine ($1: 5$) and drying in air.
${ }^{4} \mathrm{D}=\mathrm{a}=\mathrm{afor}$ drying troated chromatograms for 24 h over blue gel.
J. Chromatogr., 74 (1972) 359-365

 derivatives on silica gel (Woelm) before and after treatment with isopropanol-triethylamine (sed Table II). IA $=$ after drying the chromatogram in air; il3 $=$ after drying for $2+\mathrm{h}$ over blue gel; $\mathrm{IC}=$ after spraving with isopropanol-triethylamine and drying in air; id $=$ after drying treated chromatogram for $2 .+$ hover blue gel ; $4 \mathrm{C}=\mathrm{a}$ ac.

TMBIE III
 instrumenty

.thmolritt of Estriol ($11 g$)	Peak area (cma)			
	$1:$	3^{1}	C^{0}	121
2.5	1.62	1. 5.2	1.08	
5.0	3.90	3.12	4.15	
$7 \cdot 5$	$5 \cdot 50$	5.05	5.82	
10.0	8.30	$6 . .40$	S.fo	
2.5 .0	12.40	16.00	15.10	7.50
Molycmiale alufoil (Merck)				
1.0	0.52	0.49	0.58	ci.f)
2.5	1.95	$\underline{4.82}$	1.S9	1.60
5.0	4.10	3.10	3.80	2.06
7.5	5.So	5.10	5.92	+4.80
10.0	7.55	G.80	7.80	5.25
25.0	16.80	12.70	16.10	13.70

[^1]

 chromatogram in air; $23=$ after drying for $2+h$ over blne gel: $20=a$ after spraying with isopro-panol-tricthelamine and dreing in air: al) after drying treated chromatogram for $2+h$ over

Fig. 3. (alibration curve for the micro-assay of the DNSYl, derivatives of estrogens by fuorodensitometry on polyamide in the SD 3000 instrument (see Table 111).

TMBLE N゙
 in the SD 3000 instrument
Sensitivity setting of the instrument $=0.1$.

$\because n=$ number of cleterminations.

Results and discassion

It can be seen from Table $[$ that satisfactory resolution of the DANSYE. derivatives of estrogens can be achieved by thin-layer chomatography on silica gel. When $1-25$ ng of the DANSYL derivative of estriol were chromatographed on different pre-coated plates in chloroform-ben\%ene-ethanol (IS:2:I), direct measurement of fluorescence in the $S D$. 3000 instrument vielded the results presented in Fable II. The corresponding calibration curves, shown in ligs. I and 2 , inclicate a linear relationship between the recorded fluorescence and the concentration of the DANSVL, derivative of estriol used. Whereas prolonged drying of the chromatograms over blae

T. 1 13LIE V

 (1* THE 'I'I.D IOO INSTRUMENT

$\begin{aligned} & \therefore 1 m 0 t m t \\ & (\\| g) \end{aligned}$	Oigital integhal luits		Decti area (cmis)	
	14	Mean : stametared deniation ("is)	$n^{\prime \prime}$	Mi'all !: standard deviation ($\left.\begin{array}{c}0 \\ 0\end{array}\right)$
IEstriol				
0.005			3	0.21
0.010			3	1.36
0.025			3	3.60
0.050			3	7.7 .5
0.100	G	22 土 2.7	(0.52 ± 3.5
0.250	G	63 : 2.2 .7	(j	1.24 : 3 3.4
0.500	6	128 ± 2.1	6	2.47 - 2.0
0.750	5	19.4 -1. 2.4	6	3.70 : 2.6
1:000	6	2.59 - 2.3 .3	6	$4.86: 2.6$
Esstronct				
0.10	0	$87 \pm .3 .2$	G	1.30 : 5.3 .4
0.25	0	300 ± 3.0	6	4.961 .2 .9
0.50	6	O67 5 : 2.9	6	11.40 L. 2.7
0.75	5	1032 ± 2.9	5	18.0.4 $=2.4$
I.00	6	1386 ± 2.7	6	2.4.42 ${ }^{2} 2.2$

$n n=$ number of aterminations.
gel catused a noticeable decrease in fluorescence, treatment of chromatograms with isopropanol-triethylamine and drying over blue gel more than doubled the emitted fluorescence, thas increasing the sensitivity of the assay to approximately ing.

From Table III it is evident that in the thin-laver chromatography of the samo amounts ($(-\cdots 25 \mathrm{ng})$ of the DANSYL derivativo of estriol on different precoated polvamide plates and the fluorometrie determination of the derivative in the SD 3000 instrument, as litto as 0.5 ng of steroid was equivalont to ea. $0.5 \mathrm{~cm}^{2}$ of poak area. In contrast to fluonodensitometry on silica gel, the treatment of polymide layers with isopropanol-triethrlamine after chromatograply of the derivatives led to a significant decerase in the fluoresconce. A linear dependence of fluorescence on steroid concentration was found for the range $\mathbf{x}-\mathbf{2 5} \mathrm{ng}$ (l fig. 3). The precision of such assays is shown by the results of multiple determinations ($\mathrm{T}_{\mathrm{F}} \mathrm{able}$ IV). At a concentration of I ng of the DANSYl, clerivative of estriol per spot, the standard deviation from the mean was only 5.6%. Hence, the flurodensitometry of the DANSYL derivatives of estrogens on polvamide appears to be well suited to the determination of such steroids in small volumes of non-pregnaney urine or even in peripheral plasmás.

Fig, \& Calibration eurves for the determination of the DANSYL derivative of estrone by fluoroclensitometry on Silica Gel G No. 1500 (Schleicher \& Schall) in the TLID too instrmment (see Table V). $I=$ Evaluation by triangulation ($H \times B(1 / 2 H$), where $H=$ extended peak height and $B(1 / 2 H)=$ peak-wiclth at $1 / 2 H) ; 2=$ evaluation by digital integration of curves.

Similar results were obtained for the fluorodensitometry of 5-1000 ng of the DANSYL derivative of estriol and $100-1000 \mathrm{ng}$ of the derivative of estrone on precoated Silica Gel G (No. I500) plates following ascending chromatography in chloro-form-benzene-ethanol ($\mathrm{S}: 2: \mathrm{I}$) and measurement in the TLD roo instrument (Table V). Again, a linear dependence of the recorded fluorescence on the concentra-
tion of the DANSYL derivative was observed, whether the evaluation was carried out by triangulation of the peaks or by direct integration in the instrument (Fig. 4).

Abteilung fïr Experimentille Endokrinologic.
Laslo l' Penzes* Universitats-Frathalinik, D-65 Mainz (G.F.IR.) Greorg W. Oertel

3 I.. P. I'ENZEs, Math.-Natumaiss. Diss.. Saarlüacken, 1972.

Received July 13 th, 1972; revised manuseript received September 6th, 1972

* Noguests for reprints should he adelressed to Dr. Ing. I. I'. I'sNobs, Institut für liechts-

[^0]: * Part of the Thesis of L. P. Penzes at the Mathematisch Naturwissenschaftliche Fakultatt, Universitht des Saarlandes, D-G6 Saarbrucken, G.F.R.

[^1]: $a=$ alter clrying the chromatogram in air.
 D $13=$ after clrying for 24 h over blue gel.
 ${ }^{\circ} \mathrm{C}=$ after clrying for 72 hin air.
 $4 \mathrm{D}=$ after spiaying with isopropanol-triethylamine ($f: \mathrm{I}, \mathrm{v} / \mathrm{M}$) and drying in air.

